Archivo de la etiqueta: ciclo de Krebs

Procesos Metabólicos Celulares: Una Guía Completa

Procesos Metabólicos Celulares

Relaciónanse a continuación 10 procesos metabólicos. Indique, para cada uno de ellos, el orgánulo donde se realiza y uno de los productos que se obtiene:

Fase luminosa de la fotosíntesis

Se realiza en: Membranas tilacoidales
Se obtiene: ATP

En esta fase se transforma la energía luminosa en ATP principalmente. Para ello se cuenta con fotosistemas. Con la energía luminosa los electrones promocionan a la capa siguiente, más tarde la desprenden y vuelven a su capa Seguir leyendo “Procesos Metabólicos Celulares: Una Guía Completa” »

Fosforilación Oxidativa y Ciclo de Krebs

Fosforilación Oxidativa

La fosforilación oxidativa es la síntesis de ATP impulsada por la transferencia de electrones hacia el O2. Éste es el proceso de transfusión de energía más importante, junto con la fotofosforilación, ya que son los procesos que sintetizan la mayor cantidad de ATP en los organismos aeróbicos.

Los electrones fluyen desde intermediarios catabólicos hacia el oxígeno para la formación de energía que lleva a la formación de ATP a partir de ADP y Pi. Así, las moléculas Seguir leyendo “Fosforilación Oxidativa y Ciclo de Krebs” »

Metabolismo Energético: Glicólisis, Ciclo de Krebs y Fosforilación Oxidativa

Glicólisis

La glicólisis es una ruta metabólica que convierte la glucosa en piruvato. Consiste en una secuencia de 10 reacciones catalizadas enzimáticamente, que se divide en dos etapas principales:

Etapas de la Glicólisis

Etapa 1: Fase Preparatoria

En esta etapa, la glucosa es fosforilada, dando lugar a dos moléculas de gliceraldehído-3-fosfato. Este proceso consume dos moléculas de ATP.

Etapa 2: Fase de Beneficio Energético

Las dos moléculas de gliceraldehído-3-fosfato son oxidadas por el Seguir leyendo “Metabolismo Energético: Glicólisis, Ciclo de Krebs y Fosforilación Oxidativa” »

El ATP y las vías metabólicas de obtención de energía

Adenosín Trifosfato (ATP)

El Adenosín Trifosfato (ATP) es una molécula transportadora de energía química en las células vivas. Las enzimas acoplan las reacciones energéticas a la producción de ATP a partir de ADP y fosfato. Este se transporta a cualquier parte de la célula que necesite energía y es capaz de cederla al hidrolizarse el último enlace esterfosfórico produciéndose ADP y 1 molécula de ácido fosfórico.

El ATP constituye la moneda energética celular con la que se realizan Seguir leyendo “El ATP y las vías metabólicas de obtención de energía” »

Metabolismo Celular: Una Guía Completa de Procesos Esenciales

Catabolismo de Lípidos

Los ácidos grasos son oxidados para obtener energía en la mayor parte de los tejidos y se almacenan en forma de triacilgliceroles. Primero, los ácidos grasos son degradados en acetil-CoA mediante β-oxidación (pero para ello primero tienen que activarse mediante la unión de CoA, dando acil-CoA).

β-oxidación de los ácidos grasos

Consiste en la separación sucesiva de fragmentos de dos átomos de carbono a partir del extremo carboxílico del acil-CoA. Este proceso se denomina Seguir leyendo “Metabolismo Celular: Una Guía Completa de Procesos Esenciales” »

Metabolismo Celular: Explorando las Rutas de la Vida

Metabolismo Celular

La energía liberada en las reacciones redox de la cadena no se emplea directamente en la formación de enlaces fosfato, sino que se utiliza primero en realizar un transporte activo de protones desde la matriz hasta el espacio intermembranoso. Por lo que en este lugar se acumulan protones que crean una diferencia de cargas eléctricas y de pH, dando lugar a la generación de un potencial electroquímico. Por ello, los protones tienden a volver a la matriz a través de cualquier Seguir leyendo “Metabolismo Celular: Explorando las Rutas de la Vida” »

Catabolismo vs Anabolismo: Diferencias Clave y Procesos Esenciales

Diferencias entre catabolismo y anabolismo:
El catabolismo es la degradación oxidativa de moléculas complejas a moléculas sencillas. Genera electrones y energía.
Y su función es obtener energía en forma de ATP.
El anabolismo es la síntesis de moléculas mas complejas mediante la reducción de moléculas sencillas. Emplea la energía y electrones del catabolismo y lo que hacen es sintetizar las moléculas necesarias para realizar las funciones vitales y crear y reparar el organismo. Señala Seguir leyendo “Catabolismo vs Anabolismo: Diferencias Clave y Procesos Esenciales” »

Fundamentos de Biología Celular

Ácidos Grasos

No son un grupo de lípidos, sino componentes de algunos de ellos. Los lípidos saponificables contienen ácidos grasos.

Tipos de Ácidos Grasos

  1. Saturados: No tienen enlaces dobles.
  2. Insaturados: Tienen codos (enlaces dobles) -> Puntos de insaturación.

Ácidos Grasos Saturados

  1. Sólidos a temperatura ambiente.
  2. No tienen dobles enlaces.
  3. No tienen codos.
  4. Origen animal (sebas, mantecas, tocinos).

Ácidos Grasos Insaturados

  1. Generalmente líquidos a temperatura ambiente.
  2. 1 ó más dobles enlaces. Seguir leyendo “Fundamentos de Biología Celular” »

Procesos Metabólicos Celulares: De la Energía a la Materia

Procesos Metabólicos Celulares

Obtención de Energía:

Fotofosforilación o Fosforilación Fotosintética:

Es la síntesis de ATP impulsada por la luz. Tiene lugar en los cloroplastos, durante la fase luminosa. La energía luminosa incide sobre la clorofila de las membranas tilacoides, impulsando un transporte de electrones (e-) desde el agua (que se oxida) hasta el NADP (que se reduce), utilizando la energía de óxido-reducción liberada en el transporte de e- para sintetizar ATP.

Fosforilación Seguir leyendo “Procesos Metabólicos Celulares: De la Energía a la Materia” »

Bioquímica: Procesos Metabólicos

Cinética de la Actividad Enzimática

La velocidad de una reacción enzimática aumenta con la concentración del sustrato hasta alcanzar una velocidad máxima. Esto se debe a que todas las moléculas de enzima están ocupadas con moléculas de sustrato, formando el complejo enzima-sustrato. La constante de Michaelis-Menten (Km) es la concentración de sustrato a la que la velocidad de reacción es la mitad de la velocidad máxima.

Tipos de Inhibición